Paul J. Burgess, Joe Morris, August 2009
School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom

From 1960 to 1985, farmers successfully used technology to increase the output of crop and animal products per unit of land and particularly of labour. This reduced the number of people employed in agriculture, and promoted larger and more specialised farm enterprises. Between 1985 and 2006, food prices were relatively low, and although labour productivity continued to increase, land productivity remained relatively static. However during this period, farmers started to address the effects of agriculture on reduced water quality and habitat loss.

For established agricultural products, technological innovation tends to have an incremental effect, working through genetic improvement, the removal of abiotic and biotic stress (e.g. crop nutrition and protection, irrigation and drainage, and animal nutrition, health and housing) and the substitution of labour. Whereas the first two processes tend to be scale-neutral, the substitution of labour is usually easiest to achieve on larger farms. Other key areas for technological innovation include addressing air, soil and water quality, biodiversity, waste reduction, and information management. Over the next 50 years, large step-changes in land use arising from agricultural technology are predicted to arise from the development of new markets for agricultural products. A strong bioenergy sector will strengthen the links between crop commodity and energy prices and will have a major effect on future land use. Climate change and the regulation of greenhouse gas emissions will alter the relative profitability of crop and animal production systems. Lastly, increased public awareness of the links between food, health and the environment could substantially shift the demand for specific agricultural products.

Download document